Fast Fourier Optimization Sparsity Matters

نویسنده

  • Robert J. Vanderbei
چکیده

Many interesting and fundamentally practical optimization problems, ranging from optics, to signal processing, to radar and acoustics, involve constraints on the Fourier transform of a function. It is well-known that the fast Fourier transform (fft) is a recursive algorithm that can dramatically improve the efficiency for computing the discrete Fourier transform. However, because it is recursive, it is difficult to embed into a linear optimization problem. In this paper, we explain the main idea behind the fast Fourier transform and show how to adapt it in such a manner as to make it encodable as constraints in an optimization problem. We demonstrate a real-world problem from the field of high-contrast imaging. On this problem, dramatic improvements are translated to an ability to solve problems with a much finer grid of discretized points. As we shall show, in general, the “fast Fourier” version of the optimization constraints produces a larger but sparser constraint matrix and therefore one can think of the fast Fourier transform as a method of sparsifying the constraints in an optimization problem, which is usually a good thing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Reconstructed Images Using Compressive Sensing

Traditionally image reconstruction is done by performing Fast Fourier Transform (FFT). But recently there has been growing interest in using compressive sensing (CS) to perform image reconstruction.In compressive sensing, the main property of signal-Sparsity is explored for reconstruction purposes.In this paper, for image reconstruction, various optimization techniques like L1 optimization, Tot...

متن کامل

Energy-Efficient ECG Acquisition in Body Sensor Networks based on Compressive Sensing

This paper presents a novel ECG signal measuring approach using compressive sensing method. The signal representing sparsity in any orthogonal basis can be well recovered using minimize L1 norm optimization, while satisfying the RIP condition for the measurement matrix  and orthogonal basis . First, based on this theorem, an analysis for evaluating the sparsity of ECG signal in orthogonal bas...

متن کامل

A Deterministic Sparse FFT for Functions with Structured Fourier Sparsity

In this paper a deterministic sparse Fourier transform algorithm is presented which breaks the quadratic-in-sparsity runtime bottleneck for a large class of periodic functions exhibiting structured frequency support. These functions include, e.g., the oft-considered set of block frequency sparse functions of the form

متن کامل

Robust Compressive Phase Retrieval via L1 Minimization With Application to Image Reconstruction

Phase retrieval refers to a classical nonconvex problem of recovering a signal from its Fourier magnitude measurements. Inspired by the compressed sensing technique, signal sparsity is exploited in recent studies of phase retrieval to reduce the required number of measurements, known as compressive phase retrieval (CPR). In this paper, `1 minimization problems are formulated for CPR to exploit ...

متن کامل

Fast Reconstruction of SAR Images with Phase Error Using Sparse Representation

In the past years, a number of algorithms have been introduced for synthesis aperture radar (SAR) imaging. However, they all suffer from the same problem: The data size to process is considerably large. In recent years, compressive sensing and sparse representation of the signal in SAR has gained a significant research interest. This method offers the advantage of reducing the sampling rate, bu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011